Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Journal of Clinical Oncology ; 40(16), 2022.
Article in English | EMBASE | ID: covidwho-2009551

ABSTRACT

Background: Despite mitigation and treatment strategies, COVID-19 continues to negatively impact patients (pts) with cancer. Identifying factors that remain consistently associated with morbidity and mortality is critical for risk identification and care delivery. Methods: Using CCC19 registry data through 12/31/2021 we report clinical outcomes (30-day case fatality rate [CFR], mechanical ventilation use (MV), intensive care unit admission (ICU), and hospitalization) in adult pts with cancer and laboratory confirmed SARS-CoV-2, stratified by patient, cancer, and treatment-related factors. Results: In this cohort of 11,417 pts (with 4% reported vaccination prior to COVID-19), 55% required hospitalization, 15% ICU, 9% MV, and 12% died. Overall outcome rates remained similar for 2020 and 2021 (Table). Hydroxychloroquine was utilized in 11% and other anti-COVID-19 drugs (remdesivir, tocilizumab, convalescent plasma, and/or steroids) in 30%. Higher CFRs were observed in older age, males, Black race, smoking (14%), comorbidities (pulmonary [17%], diabetes mellitus [16%], cardiovascular [19%], renal [21%]), ECOG performance status 2+ (31%), co-infection (25%), especially fungal (35%), and initial presentation with severe COVID-19 (48%). Pts with hematologic malignancy, active/ progressing cancer status, or receiving systemic anti-cancer therapy within 1-3 months prior to COVID-19 also had worse CFRs. CFRs were similar across anti-cancer modalities. Other outcomes (ICU, MV, hospitalization) followed similar distributions by pt characteristics. Conclusions: Unfavorable outcome rates continue to remain high over 2 years, despite fewer case reports in 2021 owing to multiple factors (e.g., pandemic dynamics, respondent fatigue, overwhelmed healthcare systems). Pts with specific socio-demographics, performance status, comorbidities, type and status of cancer, immunosuppressive therapies, and COVID-19 severity at presentation experienced worse COVID-19 severity;and these factors should be further examined through multivariable modeling. Understanding epidemiological features, patient and cancer-related factors, and impact of anti-COVID-19 interventions can help inform risk stratification and interpretation of results from clinical trials.

2.
Ann Oncol ; 33(3): 340-346, 2022 03.
Article in English | MEDLINE | ID: covidwho-1588323

ABSTRACT

BACKGROUND: Vaccination is an important preventive health measure to protect against symptomatic and severe COVID-19. Impaired immunity secondary to an underlying malignancy or recent receipt of antineoplastic systemic therapies can result in less robust antibody titers following vaccination and possible risk of breakthrough infection. As clinical trials evaluating COVID-19 vaccines largely excluded patients with a history of cancer and those on active immunosuppression (including chemotherapy), limited evidence is available to inform the clinical efficacy of COVID-19 vaccination across the spectrum of patients with cancer. PATIENTS AND METHODS: We describe the clinical features of patients with cancer who developed symptomatic COVID-19 following vaccination and compare weighted outcomes with those of contemporary unvaccinated patients, after adjustment for confounders, using data from the multi-institutional COVID-19 and Cancer Consortium (CCC19). RESULTS: Patients with cancer who develop COVID-19 following vaccination have substantial comorbidities and can present with severe and even lethal infection. Patients harboring hematologic malignancies are over-represented among vaccinated patients with cancer who develop symptomatic COVID-19. CONCLUSIONS: Vaccination against COVID-19 remains an essential strategy in protecting vulnerable populations, including patients with cancer. Patients with cancer who develop breakthrough infection despite full vaccination, however, remain at risk of severe outcomes. A multilayered public health mitigation approach that includes vaccination of close contacts, boosters, social distancing, and mask-wearing should be continued for the foreseeable future.


Subject(s)
COVID-19 , Neoplasms , COVID-19 Vaccines , Humans , Neoplasms/complications , SARS-CoV-2 , Vaccination
5.
Journal of Clinical Oncology ; 39(15 SUPPL), 2021.
Article in English | EMBASE | ID: covidwho-1339366

ABSTRACT

Background: Immunodeficiency in patients (pts) with cancer can lead to the progression of common respiratory viral infections to lower respiratory tract disease (LRTD) with potentially high mortality. Understanding risk factors of SARS-CoV-2 related LRTD in pts with cancer is imperative for the development of preventive measures. Methods: We examined all patients aged 18 years or older with cancer and laboratory-confirmed SARS-CoV-2 infection reported between March 16, 2020 and February 6, 2021 in the international CCC19 registry. We examined frequency of LRTD (pneumonia, pneumonitis, acute respiratory distress syndrome, or respiratory failure), demographic and clinicopathologic factors associated with LRTD, and 30-day and overall mortality in pts with and without LRTD. Results: Of 7,289 pts with a median follow-up time of 42 (21-90) days, 2187 (30%) developed LRTD. Pts of older age (65 yrs or older), male sex, pre-existing comorbidities, baseline immunosuppressants, baseline corticosteroids, and ECOG performance status of 2 or more had substantially higher rates of LRTD compared to those without these risk factors (Table). We did not observe differences in LRTD rates between pts of different racial/ethnic groups, smoking history, hypertension, obesity, cancer status, timing or type of anti-cancer therapy. LRTD was more likely in pts with thoracic malignancy (39%), hematological malignancy (39%) compared to those with other solid tumors (27%). The majority of pts (86%) had symptomatic presentation;however, 8% of pts with asymptomatic presentation developed LRTD. 30-day and overall mortality rates were significantly higher in pts with LRTD than those without LRTD (31% vs. 4% and 38% vs. 6%, P < 0.05). Conclusions: COVID-19 related LRTD rate is high and associated with worse mortality rates in pts with cancer. The majority of risk factors associated with LRTD demonstrate underlying immunodeficiency or lung structural damage as a driving force in this population. Identifying pts at high-risk for developing LRTD can help guide clinical management, improve pt outcomes, increase the cost-effectiveness of antiviral therapy, and direct future clinical trial designs for vaccine or antiviral agents. (Table Presented).

6.
Journal of Clinical Oncology ; 39(15 SUPPL), 2021.
Article in English | EMBASE | ID: covidwho-1339364

ABSTRACT

Background: COVID-19 has been associated with immune modulation that may predispose infected patients to bacterial, viral, or fungal coinfections. Due to critical illness, > 70% of patients with severe COVID-19 receive empiric antibacterial or antifungal therapy, along with standard anti-COVID-19 treatments. However, the frequency of proven or probable secondary infections is < 10%. To our knowledge, there are no studies evaluating co-infections in patients with cancer and COVID-19, a vulnerable group with multiple risk factors for co-infections. We aim to describe the prevalence of bacterial, viral, and fungal co-infections, identify risk factors for coinfection, and investigate the potential impact of co-infections on mortality, in patients with a history of cancer and COVID-19. Methods: The CCC19 registry (NCT04354701) includes patients with active or prior hematologic or invasive solid malignancies reported across academic and community sites. We captured bacterial, fungal, or viral coinfections diagnosed within ±2 weeks from diagnosis of COVID-19, identified factors associated with an increased risk of having a coinfection, and evaluated the association of coinfections with 30-day all-cause mortality. Results: We examined 6732 patients with a history of cancer and a laboratory-confirmed diagnosis of SARS-CoV-2 reported to CCC19 by 82 sites between March 17, 2020 and February 3, 2021, with complete data on coinfection status. Median age was 65 (interquartile range: 55-75) years with 48% male, 52% non-Hispanic white, 19% non-Hispanic black, and 16% Hispanic. 5448 (81%) had solid tumors and 1466 (22%) had hematologic malignancies. Bacterial infections were reported in 823 patients (12%), including 296 Gram+ and 245 Gram- bacterial events. Documented viral (176 patients, 3%) and fungal (59 patients, 0.9%) co-infections were rare. The risk for co-infections increased with age, and they were more frequent among men, older patients, and those with diabetes, pulmonary or renal comorbid conditions, active progressive cancer, or hematologic malignancies (unadjusted P< 0.01). The frequency of reported co-infections decreased over the study period (divided into quartiles, Mantel-Haenszel P< 0.01). All-cause mortality rates were higher among those with bacterial (24% vs. 10%), viral (22% vs. 12%), and fungal (37% vs. 12%) coinfections compared to those without (unadjusted P< 0.01). Conclusions: The frequency of bacterial infections in patients with cancer and COVID-19 is relatively low. Viral and fungal co-infections are uncommon. Coinfections are associated with higher mortality rates. Several patient and tumor factors can be used for risk stratification and guide early empiric antimicrobial agent selection, which may improve clinical outcomes. These data could inform antimicrobial stewardship interventions in this tenuous patient population.

7.
Ann Oncol ; 32(6): 787-800, 2021 06.
Article in English | MEDLINE | ID: covidwho-1191173

ABSTRACT

BACKGROUND: Patients with cancer may be at high risk of adverse outcomes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We analyzed a cohort of patients with cancer and coronavirus 2019 (COVID-19) reported to the COVID-19 and Cancer Consortium (CCC19) to identify prognostic clinical factors, including laboratory measurements and anticancer therapies. PATIENTS AND METHODS: Patients with active or historical cancer and a laboratory-confirmed SARS-CoV-2 diagnosis recorded between 17 March and 18 November 2020 were included. The primary outcome was COVID-19 severity measured on an ordinal scale (uncomplicated, hospitalized, admitted to intensive care unit, mechanically ventilated, died within 30 days). Multivariable regression models included demographics, cancer status, anticancer therapy and timing, COVID-19-directed therapies, and laboratory measurements (among hospitalized patients). RESULTS: A total of 4966 patients were included (median age 66 years, 51% female, 50% non-Hispanic white); 2872 (58%) were hospitalized and 695 (14%) died; 61% had cancer that was present, diagnosed, or treated within the year prior to COVID-19 diagnosis. Older age, male sex, obesity, cardiovascular and pulmonary comorbidities, renal disease, diabetes mellitus, non-Hispanic black race, Hispanic ethnicity, worse Eastern Cooperative Oncology Group performance status, recent cytotoxic chemotherapy, and hematologic malignancy were associated with higher COVID-19 severity. Among hospitalized patients, low or high absolute lymphocyte count; high absolute neutrophil count; low platelet count; abnormal creatinine; troponin; lactate dehydrogenase; and C-reactive protein were associated with higher COVID-19 severity. Patients diagnosed early in the COVID-19 pandemic (January-April 2020) had worse outcomes than those diagnosed later. Specific anticancer therapies (e.g. R-CHOP, platinum combined with etoposide, and DNA methyltransferase inhibitors) were associated with high 30-day all-cause mortality. CONCLUSIONS: Clinical factors (e.g. older age, hematological malignancy, recent chemotherapy) and laboratory measurements were associated with poor outcomes among patients with cancer and COVID-19. Although further studies are needed, caution may be required in utilizing particular anticancer therapies. CLINICAL TRIAL IDENTIFIER: NCT04354701.


Subject(s)
COVID-19 , Neoplasms , Aged , COVID-19 Testing , Female , Humans , Male , Neoplasms/drug therapy , Neoplasms/epidemiology , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL